Nanoscopy and Materials Engineering

The strive for unification is a mainspring in natural sciences; perhaps the most famous example is the search for the Unified Field Theory by Einstein, Heisenberg and others that – up to date – has not yet been successful. However, on the comparably modest sublevel of unifying two experimental methods as special tools of spectro-scopy and diffractometry, it may be stated that this aim could be achieved by the undersigned unit leader and coworkers.

The result was the creation of the difference electron nanoscope (DEN) and its application „nanoscopy“ as a comparably new hybrid method – however, the DEN is no classical machine as the term might infer. It is a computer program running on a fast computer system displaying 3D difference electron hyperareas floating in space together with the relevant main physical quantity, the electric field gradient efg, as a wire frame model within the unit cell of the sample under consideration. In this sense, the method acts on a sub-nanometer scale (hence the term „nanoscope“) and delivers images of uncompared symmetrical and physical evidence – letting aside the aesthetical aspects. Has anyone seen a real orbital distribution together with its efg within a crystal before? The following image shows an example.

Barrierefreiheit: Kurzbeschreibung des Bildes

3D difference electron densities (DEDs) (shaded yellow) around the centre position of the FeII-ion (red) with the efg as blue wire frame model in the unit cell of synth. Fe2SiO4. View along the c-direction (space group Pnma); for better spatial impression the surr. O2- octahedron is denoted by green lines, the adjacent silicon-O tetrahedron by yellow ones. Along certain superexchange pathways close to special oxygens, residual DED/magnetic moment densities can be recognized as the theory of magnetism for special solid state materials has predicted

From: Werner Lottermoser: The Difference Electron Nanoscope: Methods and Applications. © 2017 PanStanford Publishing Pte. Ltd., Singapore, Ashford Colour Press Ltd. ISBN 978-981-4774-01-7

 

However, the method is not a purely academic playground. Its application should lead to a better understanding of electric and magnetic interactions in crystals in order to improve the existing technical properties of materials (mat „engineering“) or to derive new compounds with unforeseen features. In this sense, the method fits well in the existing materials research activities of the Department and the Division.

At present, the DEN method consists of the following sub-units, partly available at Salzburg:

  • Classical 57Fe Mössbauer Spectroscopy, in partic. Single Crystal Mössbauer Spectroscopy SCMBS to derive the experimental efg
  • Diffractometry (X-ray, neutron and synchrotron d.) to evaluate the difference electron densities/magnetic electron densities and to derive a semi-empirical efg
  • Density Functional Theory (Self-Consistent-Charge SCC X alpha ­- Method) to determine a full-quantitative efg for comparison and for an important interaction with the experimental team


Why is the efg, obviously, so significant? Many physical and technical quantities have tensor character, i.e. they are dependent on size and direction, like the elastic tensor, the dielectric tensor, magnetic susceptibility a.s.o. - in our case the tensor of the electric field gradient. All these have in common that they are dependent on structural and symmetric properties of the solid state, i.e. the sample under consideration. This means that for a given crystallographic structure determined by the atom/ion positions and given properties like, e.g., piezoelectricity, magnetism, elasticity/plasticity, luminescence, conductivity a.s.o., the careful choice of the ions and their relative arrangement in the solid state let us create „designed“ materials (also nanomaterials).

An example is the synthesis and research on special Li ion conductors with garnet structure (battery research) that were investigated by our team.

 

Last, but not least: the DEN method is not confined to iron containing samples as the application of 57-Fe Mössbauer spectroscopy might infer: An efg can also be derived from NMR/NQR measurements, the DFT is only dependent on the performance of the computer system and diffractometry has no limitations at all. In this sense, the DEN method is rather universal. The „hype“ around it in the preceding years, was, however, merely occurring in foreign countries (USA, China). Werner Lottermoser 

 

  • News
    A team led by the Salzburg-based young researcher, Therese Wohlschlager, has developed an approach that allows biopharmaceuticals to be characterized more easily and faster than before, and subsequently, can be produced more cheaply.
    Information Event "Unifinanzierung NEU (Fokus Lehre) und Zielvereinbarungsprozess" will be held Tuesday, 16 October, 2018, from 15:00 to 17:00, Thomas Bernhard Hörsaal in the Unipark.
    Orientation Week takes place from 17 - 21 September, 2018.
    Play with - International Stallcatchers Catchathon 2018!
    On Friday, 7 September, 2018, in Berlin, the project "Making Art, Making Media, Making Change!", by Elke Zobl (Associate Professor of Science & Art), received the European Youth Culture Award (EYCA) in the category of "Science and Research”.
    Exhibition opening and conversation with Jian Haake (Kiel). Date: Thursday, 4 October at 18:30. Location: Room for Art at KunstQuartier, Bergstraße 12a. Exhibition Duration: From 5 October until 9 November, 2018. www.w-k.sbg.ac.at/de/kunstpolemik-polemikkunst/aktuelles
    The University Library Salzburg (Main Library and Faculty Library for Law) opens the door to the public and offers a diverse program.
    Political education has been a general teaching principle in Austria since 1978, that is, an educational and developmental task, which is the responsibility of the teachers of all school subjects and grades. The lecture series will show ways in which democracy education can work in different subjects, so that student teachers and educators have different perspectives on the same fundamental challenge.
    On the occasion of the Long Night of the Museums 2018, the Casting Collection of the University of Salzburg will be open to the public.
    Putting Successful Models Into Perspective in Europe, 26 – 28 September, 2018, Schloss Rif, University of Salzburg. For students there are discounted day tickets!
    New Watercolors • Eva Pötzelsberger
    Important dates and information about registering for courses at the Language Center in the Winter Semester 2018/19.
    Brothers Leopold (6 years) and Ferdinand (4 years) explained to their friends: "We go to UNI during the holidays" and were right. They had places in the fully booked summer care program of the University’s Kinderbüro.
    The Leopold Kohr Academy has organized two events, one in September and another in October, 2018. Together with the University of Salzburg, the institution runs the Kohr Archive.
    On Saturday, 22 September, 2018, at 11:00, the Botanical Garden will be displaying the images of the artist, Karin Wimmeder. Only in fair weather. Alternative date: Saturday, 29 September, 2018, 11:00. Musically accompanied by the rhythm group "Schlagartig.org".
    From Hortus Medicus to Pharma Research. An exhibition of the Association of Botanical Gardens 2018.
    On 6 December, 2018, the University of Salzburg will host the WTZ Training Days on the theme of communication, dissemination and distribution in H2020 projects.
  • Veranstaltungen
  • 19.09.18 ÖFEB-Sektion Sozialpädagogik
    19.09.18 Magnetoencephalography in Salzburg; past, present and future
    20.09.18 ÖFEB-Sektion Sozialpädagogik
    20.09.18 „Reisenotizen und Landschaftsfantasien“ neue Aquarelle • Eva Pötzelsberger
    21.09.18 ÖFEB-Sektion Sozialpädagogik
    25.09.18 Welcome Day/Orientierungstag für Erstsemestrige
  • PRESS
  • Uni-Shop
  • University of Salzburg's facebook site University of Salzburg's twitter site University of Salzburg's instagram site University of Salzburg's flickr site University of Salzburg's vimeo site