Neuste Publikationen

Surface tension determines tissue shape and growth kinetics

Ehrig, S., Schamberger, B., Bidan, C. M., West, A., Jacobi, C., Lam, K., Kollmannsberger, P., Petersen, A., Tomancak, P., Kommareddy, K., Fischer, F. D., Fratzl, P., Dunlop, J. W. C., , Science Advances, Vol. 5, eaav9394.

Capillary Bridges

The collective self-organization of cells into three-dimensional structures can give rise to emergent physical properties such as fluid behavior. Here, we demonstrate that tissues growing on curved surfaces develop shapes with outer boundaries of constant mean curvature, similar to the energy minimizing forms of liquids wetting a surface. The amount of tissue formed depends on the shape of the substrate, with more tissue being deposited on highly concave surfaces, indicating a mechano-biological feedback mechanism. Inhibiting cell-contractility further revealed that active cellular forces are essential for generating sufficient surface stresses for the liquid-like behavior and growth of the tissue. This suggests that the mechanical signaling between cells and their physical environment, along with the continuous reorganization of cells and matrix is a key principle for the emergence of tissue shape.

Mechanical properties of stingray tesserae: High-resolution correlative analysis of mineral density and indentation moduli in tessellated cartilage

Seidel, R., Roschger, A., Li, L., Bizzarro, J. J., Zhang, Q., Yin, J., Yang, T., Weaver, J. C., Fratzl, P., Roschger, P., Dean, M. N., Acta Biomaterialia 2019, 96, 421-435.

Stingray Tesselations

Skeletal tissues are built and shaped through complex, interacting active and passive processes. These spatial and temporal variabilities make interpreting growth mechanisms from morphology difficult, particularly in bone, where the remodeling process erases and rewrites local structural records of growth throughout life. In contrast to the majority of bony vertebrates, the elasmobranch fishes (sharks, rays, and their relatives) have skeletons made of cartilage, reinforced by an outer layer of mineralized tiles (tesserae), which are believed to grow only by deposition, without remodeling. We exploit this structural permanence, performing the first fine-scale correlation of structure and material properties in an elasmobranch skeleton. Our characterization across an age series of stingray tesserae allows unique insight into the growth processes and mechanical influences shaping the skeleton. Correlated quantitative backscattered electron imaging (qBEI) and nanoindentation measurements show a positive relationship between mineral density and tissue stiffness/hardness. Although tessellated cartilage as a whole (tesserae plus unmineralized cartilage) is considerably less dense than bone, we demonstrate that tesserae have exceptional local material properties, exceeding those of (mammal) bone and calcified cartilage. We show that the finescale ultrastructures recently described in tesserae have characteristic material properties suggesting distinct mechanical roles and that regions of high mineral density/stiffness in tesserae are confined predominantly to regions expected to bear high loads. In particular, tesseral spokes (laminated structures flanking joints) exhibit particularly high mineral densities and tissue material properties, more akin to teeth than bone or calcified cartilage. We conclude that these spokes toughen tesserae and reinforce points of contact between them. These toughening and reinforcing functions are supported by finite element simulations incorporating our material data. The high stresses predicted for spokes, and evidence we provide that new spoke laminae are deposited according to their local mechanical environment, suggest tessellated cartilage is both mutable and responsive, despite lacking remodeling capability.

Protecting Offspring Against Fire:Lessons From Banksia Seed Pods

Huss, J. C., Fratzl, P., Dunlop, J. W. C., Merritt, D. J., Miller, B. P., Eder, M. Frontiers in Plant Science, 10, 283, 2019 (doi: 10.3389/fpls.2019.00283)

Huss et al

Wildfires are a natural component in many terrestrial ecosystems and often play a crucial role in maintaining biodiversity, particularly in the fire-prone regions of Australia. A prime example of plants that are able to persist in these regions is the genus Banksia. Most Banksia species that occur in fire-prone regions produce woody seed pods (follicles), which open during or soon after fire to release seeds into the post-fire environment. For population persistence, many Banksia species depend on recruitment from these canopy-stored seeds. Therefore, it is critical that their seeds are protected from heat and rapid oxidation during fire. Here, we show how different species of Banksia protect their seeds inside follicles while simultaneously opening up when experiencing fire. The ability of the follicles to protect seeds from heat is demonstrated by intense 180 s experimental burns, in which the maximum temperatures near the seeds ranged from ∼75◦C for B. serrata to ∼90◦C for B. prionotes and ∼95◦C for B. candolleana, contrasting with the mean surface temperature of ∼450◦C. Many seeds of native Australian plants, including those of Banksia, are able to survive these temperatures. Structural analysis of individual follicles from these three Banksia species demonstrates that all of them rely on a multicomponent system, consisting of two valves, a porous separator and a thin layer of air surrounding the seeds. The particular geometric arrangement of these components determines the rate of heat transfer more than the tissue properties alone, revealing that a strong embedment into the central rachis can compensate for thin follicle valves. Furthermore, we highlight the role of the separator as an important thermal insulator. Our study suggests that the genus Banksia employs a variety of combinations in terms of follicle size, valve thickness, composition and geometric arrangement to effectively protect canopy-stored seeds during fire.

Organic Molecule Driven Actuators

Lin, H., Zhang, S., Xiao, Y., Zhang, C., Zhu, J., Dunlop, J. W. C., and Yuan, J., Macromolecular Rapid Communications, 1800896, 2019. (DOI: 10.1002/marc.201800896)

lin et al

Inspired by the motions of plant tissues in response to external stimuli, significant attention has been devoted to the development of actuating poly- meric materials. In particular, polymeric actuators driven by organic molecules have been designed due to their combined superiorities of tunable functional monomers, designable chemical structures, and variable structural anisot- ropy. Here, the recent progress is summarized in terms of material synthesis, structure design, polymer–solvent interaction, and actuating performance. In addition, various possibilities for practical applications, including the abilityto sense chemical vapors and solvent isomers, and future directions to satisfy the requirement of sensing and smart systems are also highlighted.

  • News
    Der Orientierungstag ist eine Informations- und Welcome-Veranstaltung, die Studienanfänger*innen den Einstieg ins Studium erleichtert.
    Bis zum 31. Oktober ist die Bewerbung auf zwei Dissertationspreise (dotiert mit jeweils 2.000 Euro) möglich:
    In diesem Semester gibt es ab 28.09.2020 keine persönliche Anmeldung zu den USI-Kursen, um eine unnötige Menschenansammlung zu vermeiden.
    Die armenische Religionsanthropologin Dr. Yulia Antonyan (Staatliche Universität Jerevan) und die österreichische Armenologin und Leiterin des ZECO Zentrum zur Erforschung des Christlichen Ostens, Univ.Doz.Dr.Dr.h.c. Jasmine Dum-Tragut Bakk.rer.nat., gehören zu den Siegern eines internationalen Forschungswettbewerb in Armenien.
    Kleine Unternehmen zwischen Handwerk, Dienstleistung und Industrie
    Die Starting Grants werden seit 2007 jährlich vergeben und ermöglichen herausragenden Forscher/innen die Durchführung innovativer Forschungsvorhaben. Die Förderpreise werden in hochkompetitiven Wettbewerben vergeben und stellen für die geförderten Forscher/innen eine bedeutende wissenschaftliche Auszeichnung dar. Dieses Jahr gingen 11 ERC Starting Grants nach Österreich, Forster erhielt den einzigen im Bereich Informatik. 13,3% aller Einreichungen wurden heuer vom ERC gefördert.
    Bereits zum 10. Mal vergab die PLUS in Kooperation mit der Kaiserschild-Stiftung die Dr. Hans-Riegel-Fachpreise im Bundesland Salzburg, heuer im Gesamtwert von 6600 Euro. Zum Jubiläum betonte Rektor Prof. Dr. Dr. h.c. Hendrik Lehnert: „Mit einer Dekade Nachwuchsförderung im MINT-Bereich setzte die PLUS früh einen richtungsweisenden Maßstab, der aktuell mit den MINT-Labs ausgebaut wird. Wegbereiter und Jurykoordinator Maurizio Musso hat neben vielen anderen die Kooperation fruchtbar mitgestaltet.
    Wichtige Termine und Informationen zur Anmeldung für die Kurse am Sprachenzentrum im Wintersemester 2020/21
    Auch historioPLUS musste sich, so wie viele andere auch, an die veränderten Umstände aufgrund von Covid-19 anpassen. Aus diesem Grund erscheint heuer der aktuelle Jahrgang etwas später als in den vergangenen Jahren.
    Seit fast 20 Jahren ist das Sprachenzentrum im Bereich Interkomprehensionsdidaktik tätig – Anlass genug, um namhafte Expert*innen im Bereich Mehrsprachigkeitsdidaktik zu vereinen, um den aktuellen Forschungsstand im Bereich Interkomprehension darzustellen. Das Ergebnis dieser Zusammenarbeit ist der Sammelband „Lehr- und Lernkompetenzen für die Interkompehension. Perspektiven für die mehrsprachige Bildung“ (Band 10 der Salzburger Reihe zur Lehrer/innen/bildung).
    Programmleitung und Gesprächsführung: Univ.-Prof. Dr. Sabine Coelsch-Foisner
    Gerade in Zeiten von Corona hat sich gezeigt, wie wichtig die digitale Unterstützung der Studierenden im Uni-Alltag ist. Das Projekt „On Track“ – auf dem Weg bleiben vereinigt digitale und soziale Welten. Es startet zum richtigen Zeitpunkt!
    Frequently Asked Questions (FAQ) zum Corona-Semester
  • Veranstaltungen
  • Alumni Club
  • Impressum
  • Facebook-Auftritt der Universität Salzburg Twitter-Auftritt der Universität Salzburg Instagram-Auftritt der Universität Salzburg Flickr-Auftritt der Universität Salzburg Vimeo-Auftritt der Universität Salzburg