Forschungsinteressen

Vom Funktionsmaterial zum aktiven Bauelement für Energiespeicherung und -umwandlung

Barrierefreiheit: Kurzbeschreibung des Bildes Energiespeicherung und –umwandlung gehören aktuell zu den relevantesten Forschungsthemen, da die Nutzung von erneuerbaren Energiequellen elementar ist für die Durchführung der Pläne zur CO2-Reduktion. Energiegewinnung aus Wind und Sonne und die elektrochemische Speicherung dieser Energie in Batterien oder Brennstoffen wie Wasserstoff erfordern Lösungen,die sowohl in ihrer Effizienz als auch in ihrer Skalierbarkeit verbessert werden müssen. Obwohl bereits einige Fortschritte erzielt wurden, zeigen die vorgeschlagenen Konzepte in vielen Fällen gute Effizienzen im Labor, aber sie sind nicht immer einfach skalierbar oder zu kostenintensiv für eine Herstellung im grösseren Massstab. Unser langfristiges Ziel ist es zur Entwicklung von Lösungen im Gebiet der Energiespeicherung beizutragen einerseits durch die Entwicklung von Funktionsmaterialen mit Hilfe von (skalierbaren) festkörperchemischen Synthesen und einfachen Abscheidetechniken und andererseits durch grundlagenwissenschaftlichen Verständnisaufbau im Bereich von Struktur-Eigenschaftsbeziehungen von Energiespeichermaterialien, der dann zu verbesserten und langlebigeren Werkstoffen führt.

Aktive Materialien für die photoelektrochemischen Energiespeicherung in solaren Brennstoffen

Barrierefreiheit: Kurzbeschreibung des BildesOxidnitride beispielsweise sind sehr geeignete Materialen für photoelektrochemische Wasserspaltung. Die Entwicklung von effizienten Photoelektrodenmaterialien ist ein wichtiger Teil unserer Arbeit. In diesem Zusammenhang ist eine umfassende Charakterisierung sehr wichtig, weil sowohl Struktur, Zusammensetzung, Kristallinität, Porosität als auch Transporteigenschaften die photoelektrochemische Effizienz beeinflussen. Die genaue Bestimmung dieser Eigenschaften ist notwending, um die Aktivität der Funktionsmaterialien in Abhängigkeit der Synthesemethoden zu verstehen und zu verbessern. Wir konnten bereits einige Erfolge erzielen, einerseits durch detailliertes Materialverständnis basierend auf breiter Analytik (XRD, TEM, SEM, photoelektrochemische Untersuchungen) und andererseits durch weitere Veränderungen in der Synthese, wie zum Beispiel einer besseren Kontrolle der Porosität oder Veränderung der Ladungsträgerdichte durch Substitution. Für eine funktionierende Photoelektrode sind darüber hinaus Schutzschichten und Co-katalysatoren zentral. Deshalb beinhaltet die Aufgabe aktive Materialien für Photoelektroden zu entwickeln, die Bereitstellung von geeigneten Photokatalysatoren inklusive Additive und die Entwicklung von skalierbaren Herstellungsprozessen, die in ihrer Gesamtheit zu einem funktionierenden Bauelement führen.

Leitende Netzwerke und Elektrodenaufbau: Hybridmaterialien

Barrierefreiheit: Kurzbeschreibung des BildesLeitende Netzwerke spielen eine sehr wichtige Rolle in Energiespeicherdispositiven. Ein gutes Beispiel sind Li-Ionenbatterien. Um eine Hochleistungselektrode zu entwickeln ist nicht nur das aktive Material selbst wichtig, sondern auch die Art und Weise, wie eine elektrisch leitfähige Verbindung zwischen den (meist isolierenden, oxidischen) Partikeln aufgebaut wird. Deshalb untersuchen wir, wie die Elektrode in ihrer Gesamtheit funktioniert und nicht nur das Elektrodenmaterial. Eine wichtige Frage ist, wie ein leitendes Netzwerk zwischen Partikeln ausgebildet werden kann, ohne die Eigenschaften des aktiven Materials negativ zu verändern, bzw mit dem Ziel, diese sogar zu verbessern. Das leitende Netzwerk kann aus einer grossen Anzahl von Materialklassen bestehen und unterschiedliche Längenskalen bedienen. Anorganische oder keramische Brücken sind häufig lokal auf die Nanoskala begrenzt, während Schichtsysteme wie reduziertes Graphenoxid (RGO) oder Carbon Nanotubes (CNTs) langreichweitige Verbindungen im μm-Bereich aufbauen. Die Synthese und anschliessende Abscheidung von Hybrid- oder Kompositmaterialien ist einer der Wege, die wir verfolgen um Elektroden mit leitenden Netzwerken zu herzustellen.

Funktionsmaterialien für Li-Ionen-Batterien und darüber hinaus

Barrierefreiheit: Kurzbeschreibung des BildesWir untersuchen V-haltigen Oxide auf ihre Eignung als Insertionsmaterialien wie zum Beispiel von Li+ oder Na+ . Mit dem Austausch des zu interkalierenden Ions ändern sich dabei sowohl die Interkalationsplateaux als auch die Kinetik. Uns interessiert, die Unterschiede im Interkalationsverhalten zu verstehen und so gezielt bessere Kathodenmaterialien für Post-Li Batterien zu entwickeln. Umfassende physikalisch-chemische Untersuchungen sind notwendig um die Oxidationszustände und Strukturveränderungen der Übergangsmetall(verbindungen) in Abhängigkeit vom Ladungszustand der Batterie und vom Batterietypen zu untersuchen. Gleichzeitig dient das Verständnis für die Veränderung des Materials während des Ladungs- und Entladungsprozesses dazu, potentielle Degradationsprozesse besser zu verstehen.

  • News
    Gemeinsam mit 400 Alumni verbrachten Rektor Heinrich Schmidinger, der künftige Rektor Hendrik Lehnert, die vier Dekane und der Senatsvorsitzende einen Sommerabend auf der „schönsten Terrasse Salzburgs“ im Restaurant M32 am Mönchsberg.
    Mit gebündelter Unterstützung des Chinazentrums und des Kinderbüros der Universität Salzburg wurden bereits letzte Woche Vorbereitungen getroffen: Gastprofessorin Wei Li erklärt: „Wir übten chinesische Schriftzeichen: Anlassbedingt als erstes „Hallo“ und „Willkommen“ für ein Begrüßungsbanner.“
    Chemiker Raphael Berger vom Fachbereich für Chemie und Physik der Materialien hat auf der 18. Konferenz zur Gasphasenelektronenbeugung den gut dotierten internationalen Hermann Mark Preis für "Gas-Phase Electron Diffraction and Structural Chemistry" gewonnen.
    Das Zentrum zur Erforschung des Christlichen Ostens (ZECO) der Universität Salzburg hielt vom 20. bis 27. Juni 2019 einen der größten internationalen Wissenschaftskongresse Kasachstans ab.
    Insgesamt 50 Personen von unterschiedlichen renommierten chinesischen Institutionen, die sich mit den Menschenrechten auseinandersetzen und unter der Leitung von Herrn Prof. Kaminski, Chinaexperte aus Wien, und Herrn LU Guangjin, Generalsekretär der China Society for Human Rights Studies in Peking besuchten am 20. Juni die Rechtswissenschaftliche Fakultät der Universität Salzburg.
    Die Anmeldung zu den Kursen der ditact_women´s IT summer studies ist in vollem Gange. Noch bis 08. Juli läuft die erste Anmeldefrist, danach wird die Restplatzbörse geöffnet.
    Der Botanische Garten lädt ein zu einer kostenlosen Führung! Treffpunkt: Eingang zum Botanischen Garten. Dauer: ca. zwei Stunden. Die Führung findet bei jedem Wetter statt. Botanischer Garten, Hellbrunnerstrasse 34.
    Die 7. Salzburg Summer School findet vom 02. bis 03. September 2019 statt. Es wird ein umfassendes pädagogisches Sommerfortbildungsprogramm für Lehrkräfte und Lehramtsstudierende aller Schulformen und Unterrichtsfächer angeboten. Anmeldungen sind möglich.
  • Veranstaltungen
  • 17.07.19 Schornsteinfeger, Zipfelfalter & Co. –Ein Blick in das faszinierende Lebender Schmetterlinge
    23.07.19 Salzburger Apotheker-Kräutergarten
  • Alumni Club
  • PRESSE
  • Uni-Shop
  • VERANSTALTUNGSRÄUME
  • STELLENMARKT
  • Facebook-Auftritt der Universität Salzburg Twitter-Auftritt der Universität Salzburg Instagram-Auftritt der Universität Salzburg Flickr-Auftritt der Universität Salzburg Vimeo-Auftritt der Universität Salzburg